طبقهبندی نیمهاتوماتیک ژئومورفومتریکی یاردانگهای لوت با شبکههای عصبی مصنوعی
Authors
Abstract:
یاردانگهای منطقة فراخشک لوت یکی از منحصربهفردترین لندفرمهای آّبی- بادی مناطق بیابانی است. شناخت و پهنهبندی ژئومورفومتریک این یاردانگها، با توجه به میسرنبودنِ بازدیدهای میدانی و دسترسی به منطقه، دقت مطلوبی نخواهد داشت. در این مطالعه یاردانگهای دشت لوت، با توپوگرافی ویژه و خاص، با یکی از روشهای شبکههای عصبی مصنوعی با عنوان «الگوریتم خودسازمانده» مطالعه و طبقهبندی شد. نخست 22 پارامتر مورفومتریک نمای اول، نمای دوم، و نمای سوم از مدل رقومی ارتفاعی با اندازة سلول 10 متر بر اساس برنامهنویسی و با کمک برازش سطوح درجة دوم و درجة سوم در نرمافزار متلب محاسبه و استخراج شد. در مرحلة بعد، 7 پارامتر مورفومتریک مؤثر در طبقهبندی و همین طور تعداد کلاسهای بهینة طبقهبندی طی دو مرحله با استفاده از شاخص فاکتور ضریب بهینه و ضریب داویس- بولدین (ضریب دی- بی) تعیین گردید. سپس، از آنالیز حساسیت به منظور تعیین میزان تأثیر هر یک از پارامترهای مورفومتریک ورودی بر روی نتایج استفاده شد. در نهایت، پارامترهای بهینة مورفومتریک با الگوریتم شبکة خودسازمانده طبقهبندی شد و نتایج با استفاده از اطلاعات موجود و نقشههای توپوگرافی مقایسه گردید. نتایج این تحقیق نشان داد که پارامترهای انحنای سطحی، چرخش، انتگرال ارتفاعسنجی، کل انحنای تجمعی، شیب، انحنای حدی، و متوسط انحنا بهینهترین پارامترهای مورفومتریک در جدایی یاردانگها هستند. همچنین، پارامترهای فوق یاردانگهای لوت را به هفت پهنه تقسیم میکنند؛ این پهنهها عبارتاند از: درة گردنهای، گودی بیضوی، کریدور کمشیب، شانة یاردانگ با شیب مقعر، شانة یاردانگ با شیب محدب، رأس یاردانگ، و آبراهة کریدور. نتایج تحلیل حساسیت نشان داد که نتایج طبقهبندی به پارامترهای چرخش، متوسط انحنا، و انتگرال ارتفاعسنجی دارای بیشترین حساسیتاند و جفت پارامترهای انتگرال ارتفاعسنجی- انحنای حدی دارای بیشترین قدرت تفکیک کلاسها هستند. به طور کلی، شبکة خودسازمانده به عنوان یک الگوریتم نظارتنشدة شبکههای عصبی مصنوعی در تلفیق پارامترهای مورفومتریک برای آنالیز نیمهاتوماتیک لندفرمهای بیابان بسیار کارآمد است.
similar resources
طبقه بندی نیمه اتوماتیک ژئومورفومتریکی یاردانگ های لوت با شبکه های عصبی مصنوعی
یاردانگ های منطقة فراخشک لوت یکی از منحصربه فردترین لندفرم های آّبی- بادی مناطق بیابانی است. شناخت و پهنه بندی ژئومورفومتریک این یاردانگ ها، با توجه به میسرنبودنِ بازدیدهای میدانی و دسترسی به منطقه، دقت مطلوبی نخواهد داشت. در این مطالعه یاردانگ های دشت لوت، با توپوگرافی ویژه و خاص، با یکی از روش های شبکه های عصبی مصنوعی با عنوان «الگوریتم خودسازمانده» مطالعه و طبقه بندی شد. نخست 22 پارامتر مورفوم...
full textپیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی
امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...
full textپیشبینی کارایی به کمک تأثیرپذیری غیرخطی از تأخیرهای زمانی در تحلیل پوششی دادهها با شبکههای عصبی مصنوعی
هدف: یکی از شیوههای مرسوم ارزیابی کارایی هر سازمان یا بنگاه، مقایسه آن با سایر رقبا یا نمونههای متناظر آن است. با این حال، در برخی پژوهشها به سنجش کارایی یک واحد در مقایسه با خود در مرور زمان پرداخته شده و روند عملکرد یک واحد نسبت به گذشته خود ارزیابی شده است. هدف پژوهش جاری، پیشبینی کارایی یک واحد با استفاده از سریهای زمانی عملکرد گذشته آن است. روش: این پژوهش به کمک مدل SBM و با استفاده ا...
full textتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
full textMy Resources
Journal title
volume 67 issue 3
pages 359- 380
publication date 2014-10-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023